Stabiliser codes over fields of even order

Robin Simoens
Ghent University \& Universitat Politècnica de Catalunya
June 3, 2024
Joint work with Simeon Ball and Edgar Moreno

arXiv:2401.06618

Introduction

Parity check matrix:

$$
H=\left(\begin{array}{cccc}
h_{11} & h_{12} & \cdots & h_{1 n} \\
h_{21} & h_{22} & \cdots & h_{2 n} \\
\vdots & \vdots & & \vdots \\
h_{r 1} & h_{r 2} & \cdots & h_{r n}
\end{array}\right)
$$

Introduction

Parity check matrix:

$$
H=\left(\begin{array}{cc|cc}
h_{11} & h_{12} & \cdots & h_{1 n} \\
h_{21} & h_{22} & \cdots & h_{2 n} \\
\vdots & \vdots & & \vdots \\
h_{r 1} & h_{r 2} & \cdots & h_{r n}
\end{array}\right)
$$

Theorem.

The following are equivalent:
$>$ A linear $[n, k, d]_{q}$ code.
$>A$ set of n points in $P G(k-1, q)$ such that d is the smallest size of a subset of dependent points.

Quantum computers

Qubits

GHENT
fwo

Qubits:

$$
\begin{gathered}
|0\rangle:=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad|1\rangle:=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
\psi=\alpha|0\rangle+\beta|1\rangle=\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
\end{gathered}
$$

where $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^{2}+|\beta|^{2}=1$

Axiom 1.

n particles are described by a unit vector $\psi \in\left(\mathbb{C}^{q}\right)^{\otimes n}$.

$$
|1\rangle \otimes|0\rangle \otimes|1\rangle \otimes|1\rangle
$$

Three axioms

Axiom 1.

n particles are described by a unit vector $\psi \in\left(\mathbb{C}^{q}\right)^{\otimes n}$.

Three axioms

Axiom 1.

n particles are described by a unit vector $\psi \in\left(\mathbb{C}^{q}\right)^{\otimes n}$.

Axiom 2.

A measurement causes ψ to collapse onto a basis vector.

$$
\frac{1}{\sqrt{2}}|0\rangle \otimes|0\rangle+\frac{1}{\sqrt{2}}|1\rangle \otimes|1\rangle \mapsto\left\{\begin{array}{l}
|0\rangle \otimes|0\rangle \text { with } 50 \% \text { chance } \\
|1\rangle \otimes|1\rangle \text { with } 50 \% \text { chance }
\end{array}\right.
$$

Three axioms

Axiom 1.

n particles are described by a unit vector $\psi \in\left(\mathbb{C}^{q}\right)^{\otimes n}$.

Axiom 2.

A measurement causes ψ to collapse onto a basis vector.

Axiom 3.

An error corresponds to multiplying ψ with a unitary operator.

Quantum coding theory

Definition.

An $((n, k, d))_{q}$ quantum code is a k-dimensional subspace of $\mathcal{H}:=\left(\mathbb{C}^{q}\right)^{\otimes n}$ that can detect all errors of weight at most $d-1$.

Quantum coding theory

Theorem (Discretisation of errors).

Suppose $q=2$. It suffices to correct the following errors:
> Bit flips:

$$
|0\rangle \mapsto|1\rangle \text { and }|1\rangle \mapsto|0\rangle \text {, i.e. }\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
$$

Quantum coding theory

Theorem (Discretisation of errors).

Suppose $q=2$. It suffices to correct the following errors:
> Bit flips:

$$
|0\rangle \mapsto|1\rangle \text { and }|1\rangle \mapsto|0\rangle \text {, i.e. }\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
$$

> Phase flips:

$$
|0\rangle \mapsto|0\rangle \text { and }|1\rangle \mapsto-|1\rangle \text {, i.e. }\left[\begin{array}{c}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{c}
\alpha \\
-\beta
\end{array}\right]
$$

Quantum coding theory

Theorem (Discretisation of errors).

Suppose $q=2$. It suffices to correct the following errors:
$>$ Bit flips:

$$
|0\rangle \mapsto|1\rangle \text { and }|1\rangle \mapsto|0\rangle \text {, i.e. }\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{l}
\beta \\
\alpha
\end{array}\right]
$$

> Phase flips:

$$
|0\rangle \mapsto|0\rangle \text { and }|1\rangle \mapsto-|1\rangle \text {, i.e. }\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right] \mapsto\left[\begin{array}{c}
\alpha \\
-\beta
\end{array}\right]
$$

> Both a bit flip and a phase flip.
These errors are elements of the Pauli group.

Quantum coding theory

$$
q=2
$$

Pauli matrices

$$
X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad Y=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \text { and } \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Pauli group

$$
\begin{aligned}
\mathcal{P} & =\langle X, Y, Z\rangle \\
& =\{ \pm I, \pm i I, \pm X, \pm i X, \pm Y, \pm i Y, \pm Z, \pm i Z\}
\end{aligned}
$$

Quantum coding theory

Pauli group.

$$
\mathcal{P}_{n}:=\left\{c X\left(a_{1}\right) Z\left(b_{1}\right) \otimes \cdots \otimes X\left(a_{n}\right) Z\left(b_{n}\right) \mid a_{i}, b_{i} \in \mathbb{F}_{q}\right\}
$$

where

$$
\begin{aligned}
X(a)|x\rangle & =|x+a\rangle \\
Z(b)|x\rangle & =(-1)^{\operatorname{tr}(b x)}|x\rangle
\end{aligned}
$$

for an orthonormal basis $\left\{|x\rangle \mid x \in \mathbb{F}_{q}\right\}$ of \mathbb{C}^{q}.

Stabiliser codes

Stabiliser code.

$$
C=\{\psi \in \mathcal{H} \mid E \psi=\psi \text { for all } E \in S\} \quad \text { where } S \leqslant \mathcal{P}_{n}
$$

Stabiliser codes

Stabiliser code.
$C=\{\psi \in \mathcal{H} \mid E \psi=\psi$ for all $E \in S\} \quad$ where $S \leqslant \mathcal{P}_{n}$

Stabiliser group.
$S=\left\{E \in \mathcal{P}_{n} \mid E \psi=\psi\right.$ for all $\left.\psi \in \mathcal{C}\right\}$

Stabiliser codes

Stabiliser code.
$C=\{\psi \in \mathcal{H} \mid E \psi=\psi$ for all $E \in S\} \quad$ where $S \leqslant \mathcal{P}_{n}$

Stabiliser group.
$S=\left\{E \in \mathcal{P}_{n} \mid E \psi=\psi\right.$ for all $\left.\psi \in \mathcal{C}\right\}$

Theorem.

S is abelian.

Stabiliser codes

Stabiliser code.
$C=\{\psi \in \mathcal{H} \mid E \psi=\psi$ for all $E \in S\} \quad$ where $S \leqslant \mathcal{P}_{n}$

Stabiliser group.
$S=\left\{E \in \mathcal{P}_{n} \mid E \psi=\psi\right.$ for all $\left.\psi \in \mathcal{C}\right\}$

Theorem.

S is abelian.

Theorem.

$d(C)=$ minimum weight of Centraliser $(S) \backslash S$.

Stabiliser codes

|||||| GHENT UNIVERSITY

Stabiliser code.
$C=\{\psi \in \mathcal{H} \mid E \psi=\psi$ for all $E \in S\} \quad$ where $S \leqslant \mathcal{P}_{n}$

Stabiliser group.

$$
S=\left\{E \in \mathcal{P}_{n} \mid E \psi=\psi \text { for all } \psi \in \mathcal{C}\right\}
$$

Theorem.

S is abelian.

Theorem.

$d(C)=$ minimum weight of Centraliser (S) if C is pure.

Assumption: C is pure.

Stabiliser codes

$$
S=\left\langle \pm X^{\vec{a}_{i}} Z^{\vec{b}_{i}}\right\rangle_{1 \leq i \leq r}
$$

Stabiliser codes

$S=\left\langle \pm X^{\vec{a}_{i}} Z^{\vec{b}_{i}}\right\rangle_{1 \leq i \leq r} \Longrightarrow \operatorname{dim} C=2^{n-r}=: 2^{k} \Longrightarrow \llbracket n, k, d \rrbracket_{q}$

Stabiliser codes

$S=\left\langle \pm X^{\vec{a}_{i}} Z^{\vec{b}_{i}}\right\rangle_{1 \leq i \leq r} \Longrightarrow \operatorname{dim} C=2^{n-r}=: 2^{k} \Longrightarrow \llbracket n, k, d \rrbracket_{q}$

$$
\mathcal{G}=\left(\begin{array}{ccc|ccc}
a_{11} & \cdots & a_{1 n} & b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{r 1} & \cdots & a_{r n} & b_{r 1} & \cdots & b_{r n}
\end{array}\right)
$$

Stabiliser codes

$$
\begin{gathered}
S=\left\langle \pm X^{\vec{a}_{i}} Z^{\vec{b}_{i}}\right\rangle_{1 \leq i \leq r} \Longrightarrow \operatorname{dim} C=2^{n-r}=: 2^{k} \Longrightarrow \llbracket n, k, d \rrbracket_{q} \\
\mathcal{G}=\left(\begin{array}{ccc|ccc}
a_{11} & \cdots & a_{1 n} & b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{r 1} & \cdots & a_{r n} & b_{r 1} & \cdots & b_{r n}
\end{array}\right)
\end{gathered}
$$

Trace-symplectic inner product.

$\left\langle(\vec{a} \mid \vec{b}),\left(\vec{a}^{\prime} \mid \vec{b}^{\prime}\right)\right\rangle_{s}:=\operatorname{tr}\left(\vec{a} \cdot \vec{b}^{\prime}+\vec{a}^{\prime} \cdot \vec{b}\right)$.

Stabiliser codes

$$
\begin{gathered}
S=\left\langle \pm X^{\vec{a}_{i}} Z^{\vec{b}_{i}}\right\rangle_{1 \leq i \leq r} \Longrightarrow \operatorname{dim} C=2^{n-r}=: 2^{k} \Longrightarrow \llbracket n, k, d \rrbracket_{q} \\
\mathcal{G}=\left(\begin{array}{ccc|ccc}
a_{11} & \cdots & a_{1 n} & b_{11} & \cdots & b_{1 n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{r 1} & \cdots & a_{r n} & b_{r 1} & \cdots & b_{r n}
\end{array}\right)
\end{gathered}
$$

Ketkar, Klappenecker, Kumar and Sarvepalli (2006).

The following are equivalent:
$>A n \llbracket n, k, d \rrbracket_{q}$ stabiliser code.
$>$ An additive code C over \mathbb{F}_{q} contained in its symplectic dual $C^{\perp_{s}}$, such that d is the minimum symplectic weight of $C^{\perp_{s}}$.

Stabiliser codes

CSS construction:

$$
\mathcal{G}=\left(\begin{array}{c|c}
G & O \\
\hline O & H
\end{array}\right)
$$

where G and H are the generator matrix and parity check matrix of a classical linear code.

Graph state:

$$
\mathcal{G}=\left(I_{n} \mid A\right)
$$

where A is the adjacency matrix of a graph.

Stabiliser codes

GHENT
fwo

Equivalent stabiliser codes:

$$
\left(\begin{array}{c}
L
\end{array}\right) \cdot\left(\begin{array}{ccc|ccc}
a_{11} & \cdots & a_{1, h n} & b_{11} & \cdots & b_{1, h n} \\
\vdots & & \vdots & \vdots & & \vdots \\
a_{r 1} & \cdots & a_{r, h n} & b_{r 1} & \cdots & b_{r, h n}
\end{array}\right) \cdot\left(\begin{array}{ccc}
R_{1} & & S_{1} \\
& \ddots & \\
& \ddots & \\
& R_{n} & \\
S_{n} \\
\hline T_{1} & & U_{1} \\
& \ddots & \\
& & T_{n}
\end{array}\right)
$$

Quantum sets of lines

$$
q=2
$$

$$
\left(\begin{array}{cccc|cccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{11} & b_{12} & \cdots & b_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{r 1} & a_{r 2} & \cdots & a_{r n} & b_{r 1} & b_{r 2} & \cdots & b_{r n}
\end{array}\right)
$$

Quantum sets of lines

$q=2$

$$
\left(\begin{array}{c|c|cc|c|c|cc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{11} & b_{12} & \cdots & b_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{r 1} & a_{r 2} & \cdots & a_{r n} & b_{r 1} & b_{r 2} & \cdots & b_{r n}
\end{array}\right)
$$

Glynn, Gulliver, Maks and Gupta (2014).

The following are equivalent:
$>A n \llbracket n, k, d \rrbracket_{2}$ stabiliser code.
$>A$ quantum set of n lines in $P G(n-k-1,2)$ with minimum distance d.

Quantum sets of lines

$q=2$

$$
\left(\begin{array}{c|c|cc|c|c|cc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{11} & b_{12} & \cdots & b_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{r 1} & a_{r 2} & \cdots & a_{r n} & b_{r 1} & b_{r 2} & \cdots & b_{r n}
\end{array}\right)
$$

Glynn, Gulliver, Maks and Gupta (2014).

The following are equivalent:
$>A n \llbracket n, k, d \rrbracket_{2}$ stabiliser code.
$>A$ quantum set of n lines in $P G(n-k-1,2)$ with minimum distance d.

Moreover, equivalent codes correspond to projectively equivalent lines.

Quantum sets of lines

Definition.

A set of lines in $\operatorname{PG}(n, 2)$ is quantum if every codimension two space is skew to an even number of its lines.

Quantum sets of lines

Definition.
A set of lines in $\operatorname{PG}(n, 2)$ is quantum if every codimension two space is skew to an even number of its lines.

Its minimum distance is the smallest size of a set of dependent points on distinct lines.

Quantum sets of lines

$17 / 25$

Quantum sets of sets of lines

$$
q=2^{h}
$$

Ball, Moreno and Simoens (2024+).

The isomorphism $\mathbb{F}_{2^{h}} \cong \mathbb{F}_{2}^{h}$ induces a bijection between $\llbracket n, k, d \rrbracket_{2^{h}}$ codes and $\llbracket h n, h k, d^{\prime} \rrbracket_{2}$ codes. Moreover, $d^{\prime} / h \leq d \leq d^{\prime}$.

Example.

Let $\alpha \in \mathbb{F}_{4} \backslash\{0,1\}$, then $\left\{\alpha, \alpha^{2}\right\}$ is a basis of \mathbb{F}_{4} over \mathbb{F}_{2}.

$$
\begin{aligned}
& \llbracket 2,1,2 \rrbracket_{4} \text { code with matrix }\left(\begin{array}{cc|cc}
1 & 1 & \alpha & 0 \\
0 & 1 & 1 & 1
\end{array}\right) \\
\Longrightarrow & \llbracket 4,2,2 \rrbracket_{2} \text { code with matrix }\left(\begin{array}{ll|ll|ll:ll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Quantum sets of sets of lines

$$
q=2^{h}
$$

$$
\left(\begin{array}{cccc|cccc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{11} & b_{12} & \cdots & b_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{r 1} & a_{r 2} & \cdots & a_{r n} & b_{r 1} & b_{r 2} & \cdots & b_{r n}
\end{array}\right)
$$

Quantum sets of sets of lines

$$
q=2^{h}
$$

$$
\left(\begin{array}{c|c|cc|c|c|cc}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{11} & b_{12} & \cdots & b_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\
a_{r 1} & a_{r 2} & \cdots & a_{r n} & b_{r 1} & b_{r 2} & \cdots & b_{r n}
\end{array}\right)
$$

Ball, Moreno and Simoens (2024+).

The following are equivalent:
$>A n \llbracket n, k, d \rrbracket_{2^{h}}$ stabiliser code.
$>$ A quantum set of n sets of h lines in $P G(h(n-k)-1,2)$ with minimum distance d.

Quantum sets of sets of lines

Definition.

A quantum set of sets of lines is a partitioning of a quantum set of $h n$ lines into n subsets of h lines, each subset spanning a projective $(2 h-1)$-space $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ respectively.

Quantum sets of sets of lines

Definition.

A quantum set of sets of lines is a partitioning of a quantum set of $h n$ lines into n subsets of h lines, each subset spanning a projective $(2 h-1)$-space $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$ respectively.

Its minimum distance is the smallest size of a set of dependent points in distinct π_{i} 's.

Quantum sets of sets of lines

Quantum symplectic polar spaces

Ball, Moreno and Simoens (2024+).

The following are equivalent:
$>A n \llbracket n, k, d \rrbracket_{2^{h}}$ stabiliser code.
$>$ A quantum set of n symplectic polar spaces of rank h in $P G(h(n-k)-1,2)$ with minimum distance d.
Moreover, equivalent codes correspond to projectively equivalent quantum sets of symplectic polar spaces.

Quantum symplectic polar spaces

Definition.

A quantum set of symplectic polar spaces is a set of projective $(2 h-1)$-spaces $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$, each equipped with a symplectic polarity with the following property:
"Every codimension two subspace intersects an even number of the π_{i} 's in a subspace π for which π^{\perp} is totally isotropic."

Quantum symplectic polar spaces

Definition.

A quantum set of symplectic polar spaces is a set of projective ($2 h-1$)-spaces $\pi_{1}, \pi_{2}, \ldots, \pi_{n}$, each equipped with a symplectic polarity with the following property:
"Every codimension two subspace intersects an even number of the π_{i} 's in a subspace π for which π^{\perp} is totally isotropic."

Its minimum distance is the smallest size of a set of dependent points in distinct π_{i} 's.

Quantum symplectic polar spaces

Ball, Moreno and Simoens (2024+).

$A \llbracket 7,1,4 \rrbracket_{4}$ code does not exist (and neither does an $\llbracket 8,0,5 \rrbracket_{4}$ code).

Quantum symplectic polar spaces

Ball, Moreno and Simoens (2024+).
$A \llbracket 7,1,4 \rrbracket_{4}$ code does not exist (and neither does an $\llbracket 8,0,5 \rrbracket_{4}$ code).
Proof (sketch). Geometrically: quantum set of 7 symplectic polar spaces of rank 2 in $\operatorname{PG}(11,2)$ with minimum distance 5.

Quantum symplectic polar spaces

Ball, Moreno and Simoens (2024+).
$A \llbracket 7,1,4 \rrbracket_{4}$ code does not exist (and neither does an $\llbracket 8,0,5 \rrbracket_{4}$ code).
Proof (sketch). Geometrically: quantum set of 7 symplectic polar spaces of rank 2 in $\mathrm{PG}(11,2)$ with minimum distance 5.
$\left.\left(\begin{array}{c|c|c|c|c|c|c}I & O & O & I & I & I & I \\ \hline O & I & O & I & A_{1} & B_{1} & C_{1} \\ \hline O & O & I & I & A_{2} & B_{2} & C_{2}\end{array}\right)\right\} 341$ solutions

Every 3 column blocks have full rank.

Quantum symplectic polar spaces

Ball, Moreno and Simoens (2024+).
$A \llbracket 7,1,4 \rrbracket_{4}$ code does not exist (and neither does an $\llbracket 8,0,5 \rrbracket_{4}$ code).
Proof (sketch). Geometrically: quantum set of 7 symplectic polar spaces of rank 2 in $\mathrm{PG}(11,2)$ with minimum distance 5.
$\left.\left(\begin{array}{c|c|c|c|c|c|c}I & O & O & I & I & I & I \\ \hline O & I & O & I & A_{1} & B_{1} & C_{1} \\ \hline O & O & I & I & A_{2} & B_{2} & C_{2}\end{array}\right)\right\} 341$ solutions

Every 3 column blocks have full rank.
For each line ℓ in each of the 7 solids, let

$$
x_{\ell}=\left\{\begin{array}{l}
0 \text { if } \ell \text { is totally isotropic } \\
1 \text { if } \ell \text { is hyperbolic }
\end{array}\right.
$$

\Longrightarrow homogeneous equation for each codimension two subspace.

Quantum symplectic polar spaces

Ball, Moreno and Simoens (2024+).
$A \llbracket 7,1,4 \rrbracket_{4}$ code does not exist (and neither does an $\llbracket 8,0,5 \rrbracket_{4}$ code).
Proof (sketch). Geometrically: quantum set of 7 symplectic polar spaces of rank 2 in $\mathrm{PG}(11,2)$ with minimum distance 5.

$$
\left.\left(\begin{array}{c|c|c|c|c|c|c}
I & O & O & I & I & I & I \\
\hline O & I & O & I & A_{1} & B_{1} & C_{1} \\
\hline O & O & I & I & A_{2} & B_{2} & C_{2}
\end{array}\right)\right\} 341 \text { solutions }
$$

Every 3 column blocks have full rank.
For each line ℓ in each of the 7 solids, let

$$
x_{\ell}=\left\{\begin{array}{l}
0 \text { if } \ell \text { is totally isotropic } \\
1 \text { if } \ell \text { is hyperbolic }
\end{array}\right.
$$

\Longrightarrow homogeneous equation for each codimension two subspace.

Thank you for listening!

