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Introduction

Parity check matrix:

H =


h11 h12 · · · h1n
h21 h22 · · · h2n
...

...
...

hr1 hr2 · · · hrn



Theorem.

The following are equivalent:

ä A linear [n, k, d]q code.

ä A set of n points in PG(k− 1, q) such that d is the smallest size of
a subset of dependent points.
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Quantum computers
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Qubits

Qubits:

|0〉 :=
[
1
0

]
|1〉 :=

[
0
1

]

ψ = α |0〉+ β |1〉 =
[
α
β

]

where α, β ∈ C and |α|2 + |β|2 = 1
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Three axioms

Axiom 1.

n particles are described by a unit vector ψ ∈ (Cq)⊗n.

|1〉 ⊗ |0〉 ⊗ |1〉 ⊗ |1〉

Axiom 2.

A measurement causes ψ to collapse onto a basis vector.

Axiom 3.

An error corresponds to multiplying ψ with a unitary operator.
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Axiom 2.

A measurement causes ψ to collapse onto a basis vector.

1√
2
|0〉 ⊗ |0〉+ 1√

2
|1〉 ⊗ |1〉 7→

{
|0〉 ⊗ |0〉 with 50% chance

|1〉 ⊗ |1〉 with 50% chance
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An error corresponds to multiplying ψ with a unitary operator.
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Quantum coding theory

Definition.

An ((n, k, d))q quantum code is a k-dimensional subspace of
H := (Cq)⊗n that can detect all errors of weight at most d− 1.
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Quantum coding theory

Theorem (Discretisation of errors).

Suppose q = 2. It suffices to correct the following errors:

ä Bit flips:

|0〉 7→ |1〉 and |1〉 7→ |0〉 , i.e.
[
α
β

]
7→

[
β
α

]

ä Phase flips:

|0〉 7→ |0〉 and |1〉 7→ − |1〉 , i.e.
[
α
β

]
7→

[
α
−β

]
ä Both a bit flip and a phase flip.

These errors are elements of the Pauli group.
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Quantum coding theory

q = 2

Pauli matrices

X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
and Z =

(
1 0
0 −1

)

Pauli group

P =〈X,Y, Z〉
={±I,±iI,±X,±iX,±Y,±iY,±Z,±iZ}
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Quantum coding theory

Pauli group.

Pn := {cX(a1)Z(b1)⊗ · · · ⊗X(an)Z(bn) | ai, bi ∈ Fq}

where

X(a) |x〉 = |x+ a〉

Z(b) |x〉 =(−1)tr(bx) |x〉

for an orthonormal basis {|x〉 | x ∈ Fq} of Cq .
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Stabiliser codes

Stabiliser code.

C = {ψ ∈ H | Eψ = ψ for all E ∈ S} where S 6 Pn

Stabiliser group.

S = {E ∈ Pn | Eψ = ψ for all ψ ∈ C}

Theorem.

S is abelian.

Theorem.

d(C) = minimum weight of .

Assumption: C is pure.
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Stabiliser code.

C = {ψ ∈ H | Eψ = ψ for all E ∈ S} where S 6 Pn

Stabiliser group.

S = {E ∈ Pn | Eψ = ψ for all ψ ∈ C}

Theorem.

S is abelian.

Theorem.

d(C) = minimum weight of Centraliser(S) if C is pure.

Assumption: C is pure.
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Stabiliser codes

S =
〈
±X~aiZ

~bi
〉
1≤i≤r

=⇒ dimC = 2n−r =: 2k =⇒ [[n, k, d]]q

G =

a11 · · · a1n b11 · · · b1n
...

...
...

...
ar1 · · · arn br1 · · · brn


Trace-symplectic inner product.

〈(~a|~b), (~a′|~b′)〉s := tr
(
~a ·~b′ + ~a′ ·~b

)
.
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Stabiliser codes

S =
〈
±X~aiZ

~bi
〉
1≤i≤r

=⇒ dimC = 2n−r =: 2k =⇒ [[n, k, d]]q

G =

a11 · · · a1n b11 · · · b1n
...

...
...

...
ar1 · · · arn br1 · · · brn


Ketkar, Klappenecker, Kumar and Sarvepalli (2006).

The following are equivalent:

ä An [[n, k, d]]q stabiliser code.

ä An additive code C over Fq contained in its symplectic dual C⊥s ,
such that d is the minimum symplectic weight of C⊥s .
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Stabiliser codes

CSS construction:

G =

(
G O

O H

)

where G and H are the generator matrix and parity check matrix of
a classical linear code.

Graph state:

G =
(
In A

)
where A is the adjacency matrix of a graph.
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Stabiliser codes

Equivalent stabiliser codes:

 L

 ·

	 	a11 · · · a1,hn b11 · · · b1,hn
...

...
...

...
ar1 · · · ar,hn br1 · · · br,hn

 ·


R1 S1. . . . . .

Rn Sn
T1 U1. . . . . .

Tn Un


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Quantum sets of lines

q = 2 
a11 a12 · · · a1n b11 b12 · · · b1n
a21 a22 · · · a2n b21 b22 · · · b2n
...

...
...

...
...

...
ar1 ar2 · · · arn br1 br2 · · · brn



Glynn, Gulliver, Maks and Gupta (2014).

The following are equivalent:

ä An [[n, k, d]]2 stabiliser code.

ä A quantum set of n lines in PG(n− k − 1, 2) with minimum
distance d.

Moreover, equivalent codes correspond to projectively equivalent lines.
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Quantum sets of lines

Definition.

A set of lines in PG(n, 2) is quantum if every codimension two
space is skew to an even number of its lines.

PG(n− 2, 2)

PG(n, 2)

{even #

Its minimum distance is the smallest size of a set of dependent
points on distinct lines.
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Quantum sets of lines

(I8 C8) =



1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0


e1

e2 e3

e4

e5

e6e7

e8

=⇒ [[8, 0, 3]]2 stabiliser code
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Quantum sets of sets of lines

q = 2h

Ball, Moreno and Simoens (2024+).

The isomorphism F2h
∼= Fh

2 induces a bijection between [[n, k, d]]2h
codes and [[hn, hk, d′]]2 codes. Moreover, d′/h ≤ d ≤ d′.

Example.

Let α ∈ F4 \ {0, 1}, then {α, α2} is a basis of F4 over F2.

[[2, 1, 2]]4 code with matrix
(
1 1 α 0
0 1 1 1

)

=⇒ [[4, 2, 2]]2 code with matrix
(
1 1 1 1 1 0 0 0
0 0 1 1 1 1 1 1

)
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Quantum sets of sets of lines
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minimum distance d.
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Quantum sets of sets of lines

Definition.

A quantum set of sets of lines is a partitioning of a quantum set
of hn lines into n subsets of h lines, each subset spanning a
projective (2h− 1)-space π1, π2, . . . , πn respectively.

π1 π2 π3

Its minimum distance is the smallest size of a set of dependent
points in distinct πi’s.
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=⇒ [[4, 0, 3]]4 stabiliser code



22/25

Quantum symplectic polar spaces

Ball, Moreno and Simoens (2024+).

The following are equivalent:

ä An [[n, k, d]]2h stabiliser code.

ä A quantum set of n symplectic polar spaces of rank h in
PG(h(n− k)− 1, 2) with minimum distance d.

Moreover, equivalent codes correspond to projectively equivalent
quantum sets of symplectic polar spaces.
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Quantum symplectic polar spaces

Definition.

A quantum set of symplectic polar spaces is a set of projective
(2h− 1)-spaces π1, π2, . . . , πn, each equipped with a symplectic
polarity with the following property:

“Every codimension two subspace intersects an even number of the πi’s
in a subspace π for which π⊥ is totally isotropic.”

π1 π2 π3

Its minimum distance is the smallest size of a set of dependent
points in distinct πi’s.
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Quantum symplectic polar spaces

Ball, Moreno and Simoens (2024+).

A [[7, 1, 4]]4 code does not exist (and neither does an [[8, 0, 5]]4 code).

Proof (sketch). Geometrically: quantum set of 7 symplectic polar
spaces of rank 2 in PG(11, 2) with minimum distance 5. I O O I I I I

O I O I A1 B1 C1

O O I I A2 B2 C2

}
341 solutions

Every 3 column blocks have full rank.
For each line ` in each of the 7 solids, let

x` =

{
0 if ` is totally isotropic

1 if ` is hyperbolic

=⇒ homogeneous equation for each codimension two subspace.
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Thank you for listening!
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